Enhancing Continuous Corn Production in Conservation Tillage with Nitrogen, Phosphorus, and Sulfur Starter Fluid Combinations and Placements 2010

Jeff Vetsch Univ. of Minnesota, Southern Research and Outreach Center

ABSTRACT

Continuous corn production using conservation tillage often results in less uniform and smaller early season growth along with lower grain yields and profitability. This is especially true on fine-textured and poorly drained soils in the northern part of the Corn Belt where decomposition of surface residues is slower and soil temps are colder. The primary objective of this study was to determine the effects of fluid starter fertilizer combinations and placement of 10-34-0 (APP), 28-0-0 (UAN), and 12-0-0-26 (ATS) on second-year corn production in reduced tillage/high-residue conditions. Two field experiments, one on a Webster clay loam soil at Waseca and another on a Mt Carroll silt loam near Rochester, were established in April of 2010. Twelve of the 14 total treatments were comprised of a factorial combination of rates of three fluid starter fertilizers: 0 or 4 gal/ac of APP, 0 or 8 gal/ac of UAN, and 0, 2, and 4 gal/ac of ATS. The APP was applied in-furrow with the seed while UAN and ATS were applied as a dribble band on the soil surface within 2" of the seed row. Corn was planted at 35,000 seeds/ac on May 3 at Waseca and April 27 at Rochester. At V2-3 UAN was injected 3" deep midway between the rows to give a total (at planting + V2-3) N rate of 180 lb/ac on all plots. At V7-8 stage corn plants were harvested from each plot to determine dry matter yield, and the plant tissue was analyzed for N, P, K and S concentration. Grain yield and moisture content were determined by combine harvesting. Grain samples were analyzed for N. P. K and S concentration. A record wet June and July at Waseca stressed corn and may have reduced yield potential. Crop response to treatments varied markedly between locations. Early plant growth (plant heights and dry matter yields) were enhanced when N, P and S starter fertilizers as APP. UAN and ATS were applied at the Waseca site. Whereas only APP application affected early plant growth at Rochester. Grain moisture was reduced about 1.0 percentage points when APP or UAN were applied at Waseca, while moisture was reduced 1.5 and 2.5 percentage points with the 2 and 4 gal/ac rate of ATS, respectively, compared with 0 gal/ac. At Rochester, grain moisture was reduced about 1 percentage point with APP, slightly with UAN, and was not affected by ATS application. Corn grain yields were 6 to 9 bu/A greater with ATS (sulfur fertilization) at Waseca, when averaged across APP and UAN treatments. A significant UAN×ATS interaction for grain yield showed when UAN was not applied at planting, grain yields increased about 18 bu/ac with ATS fertilization. When UAN was applied, no yield response to ATS was observed. At Waseca adding 1 gal/ac of ATS to 4 gal/ac of APP applied in-furrow increased grain yields 12 bu/ac compared with APP alone and final plant populations were not reduced significantly. No grain yield responses to N, P, and S starter fertilizer treatments were found at Rochester.

INTRODUCTION

Crop rotations in the Midwest have changed from the traditional corn-soybean rotation to more cornintensive rotations. Due to the expanding demand for corn to supply the ethanol industry and the increasing insect and disease challenges facing soybean producers, some farmers are switching to a corn-corn-soybean rotation or for some, continuous corn. These rotations produce large amounts of biomass (corn stover) that often remain on the soil surface with present day tillage systems. This is good in terms of erosion control, but can be a significant problem from the standpoint of seedbed preparation, early corn growth, and yield.

The switch back to corn dominated rotations presents a huge tillage challenge to corn producers on many poorly drained, colder soils of the northern Corn Belt because corn yields following corn are generally reduced significantly when conservation tillage practices are used. Research by Randall and Vetsch (2010) has shown many of the early growth and yield problems associated with corn after corn

could be eliminated by using conventional tillage (i.e. moldboard plow) in combination with fluid starter fertilizers. Generally, for most northern Corn Belt farmers the moldboard plow is not an option, because of increased potential for erosion, equipment, or labor (time). This research also showed fluid starter fertilizers [APP (10-34-0) applied in furrow or APP and UAN (28-0-0) dribbled on the soil surface] significantly increased early growth of corn by 13 to 43% and corn yield by 5 to 7 bu/ac. This study did not address a commonly asked question, would dual placement (APP in furrow and UAN dribbled on the soil surface) further enhance corn production.

Continuous corn generally shows slow early growth, pale spindly plants, and reduced yields with reduced tillage systems. Sulfur deficiency in corn has contributed to some of these pale looking plants. Corn yield responses to sulfur have been reported on medium and fine-textured soils in Minnesota and Iowa. In Minnesota we have very little data on the optimum rate and placement of sulfur containing fluid starter fertilizers for corn. With increased costs and price volatility of fertilizers, farmers have questions about what products, placements, and rates give them the most "bang for their buck".

The objectives of this study were to: 1) determine the effects of fluid starter fertilizer combinations and placement of 10-34-0 (APP), 28-0-0 (UAN), and 12-0-0-26 (ATS) on second-year corn production in reduced tillage/high-residue conditions and 2) provide management guidelines on placement and rates of UAN, APP, and ATS combined as a starter for crop consultants, local advisors, and the fertilizer industry as they serve corn producers trying to meet the growing needs for corn grain by the ethanol industry and livestock producers.

EXPERIMENTAL PROCEDURES

Two field experiments were established in April. One on a Webster clay loam soil at the Southern Research and Outreach Center, Waseca, MN and another on a Mt Carroll silt loam five miles east of Rochester (southeast) MN. Both sites were planted to corn in 2009 and were fall chisel plowed after harvest. Fourteen total treatments were arranged in a randomized, complete-block design with four replications. Twelve of the 14 treatments comprised a factorial combination of sources and rates of three fluid starter fertilizers: 0 or 4 gal/ac of APP (5+16+0, lb/ac of N, P_2O_5 , and S, respectively); 0 of 8 gal/ac or UAN (24+0+0); and 0, 2, and 4 gal/ac of ATS (2 gal = 3+0+5.8 and 4 gal = 5+0+11.5). The APP fluid starter was applied in-furrow with the seed while UAN and ATS were applied as a dribble band on the soil surface within 2" of the seed row. Two additional treatments were included to measure crop response when adding 1 gal/ac of ATS in-furrow with 4 gal/ac of APP with and without 8 gal/ac of UAN dribbled on the soil surface. Each plot was 10' wide (4 30-inch rows) by 50' long. Soil samples (0-6" depth) were taken from each rep to characterize the research plot areas. Soil tests averaged: pH = 5.5, organic matter = 6.1%, Bray $P_1 = 42$ ppm (VH) and exchangeable K = 191 ppm (VH) at Waseca and pH = 7.3, organic matter = 4.8%, Bray $P_1 = 22$ ppm (VH) and exchangeable K = 170 ppm (VH) at Rochester.

Corn (DeKalb 52-43 at Waseca and 48-37 at Rochester) was planted at 35,000 seeds/ac on May 3 (Waseca) and April 27 (Rochester). Weeds were controlled with a combination of pre [Harness (1.5 pt/ac) and Callisto (5 oz/ac)] and post [glyphosate (32 oz/ac)] emergence herbicide applications. Surface residue accumulation after planting averaged about 40-45%. In early June stand counts were taken on the center two rows of each plot and plots were thinned to a uniform plant population. At V2-3 on June 3 at Waseca and June 7 at Rochester, UAN was injected 3" deep midway between the rows to give a total (at planting + at V2-3) N rate of 180 lb/ac on all plots. On June 21 at Waseca and June 24 at Rochester (V7-8 stage) 8 random plants from each plot were cut at ground level, dried, weighed to determine dry matter yield, ground, and analyzed for N, P, K and S concentration in plant tissue. On the same dates extended leaf plant heights from 10 random plants per plot were also measured. At R1 (July 20 at Waseca and July 16 at Rochester) SPAD meter readings were taken from the ear leaf of 30 plants in each plot. Relative leaf chlorophyll content was calculated from these measurements. At physiological maturity (black layer) corn stover yield was obtained by machine harvesting 15' of one row after removing the ear (Waseca site only). A subsample of the stover was dried, ground, and analyzed for N, P, K and S concentration on October 4 (Waseca) and

12 (Rochester) by harvesting the center two rows of each plot with a research plot combine equipped with a weigh cell and moisture sensor. Grain yields were calculated at 15.5% moisture. Grain samples were saved, dried, ground, and analyzed for N, P, K and S.

RESULTS AND DISCUSSION

The 2010 growing season was warm and wet. Two months [June (9.64", 5.42" greater-than-normal) and September (12.66", 9.47" greater-than-normal)] set 96-year records for precipitation at Waseca (Table 1). The June + July total precipitation (16.25") and the growing season total (34.61") were also records. Growing season precipitation at the Rochester location was about 50% greater-than-normal. With much of the excess falling during the months of June, August, and September. At Waseca growing degree units (GDU) for the entire growing season May 1 through October 3 (first frost) totaled 2,606 which was 8% greater-than-normal.

The extremely wet conditions in June and July at Waseca were conducive to N loss via denitrification and leaching. These research sites and many farmer fields in Southern Minnesota would have benefited from supplemental N applications. Unfortunately, these research sites and many farmer fields did not receive supplemental N because: many fields had standing water or were too wet for equipment traffic; by the time fields dried out corn was too large for conventional sidedress equipment; and some corn was already in reproductive stages and the benefit of N applied this late was questioned.

Waseca site

Plant heights and whole plant dry matter yields were affected by all three of the treatment main effects in the factorial analysis of treatments 1-12 (Table 2). Heights and yields were increased when APP was applied in-furrow and when UAN and ATS were applied as a surface band. The 4 gal/ac rate of ATS did not increase heights or yields above the 2 gal/ac rate, when averaged across APP and UAN treatment main effects. A significant APP×UAN interaction for plant height was explained by the magnitude of the response in plant height when fertilized with one vs both of these nutrients. Plant heights increased about 4" when fertilized with either UAN or APP, compared with plots without UAN and APP. Whereas plant heights increased only 2" when fertilized with both UAN and APP, compared with either UAN or APP. The 1 gal/ac of ATS plus 4 gal/ac or APP applied in-furrow treatment increased V7 plant heights and yields compared with 4 gal/ac of APP alone. The application of fluid fertilizers at planting resulted in dramatic visual (early growth, vigor, and color) differences as shown in Figure 1.

A few nutrient concentrations and nearly all nutrient uptakes in V7 corn plants were affected by the treatment main effects in this study (Table 2). Nitrogen and S concentrations were reduced when 4 gal/ac of APP was applied in-furrow compared with 0 gal/ac of APP (likely due to dilution), when averaged across UAN and ATS treatments. Sulfur concentration increased as the rate of S fertilizer (ATS) increased, when averaged across UAN and APP treatments. However, adding 1 gal/ac of ATS to 4 gal/ac of APP applied in-furrow, did not affect S concentration in V7 corn plants, compared with 4 gal/ac of APP alone. Applying 4 gal/ac of APP in-furrow increased N, P, and K uptake, when averaged across UAN and ATS treatments. Nitrogen, P, K and S uptake in corn plants were increased when UAN and ATS were applied at planting. Generally, the nutrient uptake responses to treatment main effects found in this study were a result of small plant DM yield responses to treatments and not to increased nutrient concentrations. Several significant APP×UAN interactions for nutrient concentration and uptake were found. The APP×UAN interaction for P concentration showed when APP or UAN were applied at planting, P concentration in whole plants increased compared with the control (when neither were applied). However when APP and UAN were applied together, P concentration declined slightly (data not shown). An APP×UAN interaction for S concentration showed S concentration was reduced slightly when both APP and UAN were applied, whereas when APP or UAN were applied S concentrations were similar to the control (data not shown). Significant APP×UAN interactions for N. P and S uptake in V7 corn plants were a result of increased growth and have the same explanation as the APP×UAN interaction for plant height in the previous paragraph (data not shown).

Treatment effects on grain moisture and grain, stover, and silage yields are presented in Table 3. Grain moisture was reduced 0.9 percentage points with APP (4 gal/ac vs 0 gal) and UAN (8 gal/ac vs 0 gal) application. Grain moisture was reduced 1.5 and 2.5 percentage points with the 2 and 4 gal/ac rate of ATS, respectively, compared with 0 gal of ATS and averaged across APP and UAN treatments. The driest grain (16.5%) was obtained when N, P, and S were applied at planting (treatment # 12). The wettest grain (20.7%) was found in the control plot (treatment # 1). Corn grain, stover, and silage yields were not affected by the application of APP or UAN at planting, although APP and UAN application enhanced early growth and reduced grain moisture. Grain yields were 9 bu/ac greater than the control with 2 gal/ac of ATS, when averaged across APP and UAN treatments. Yields were not different between the 2 and 4 gal/ac rates of ATS. Applying 1 gal/ac of ATS and 4 gal/ac of APP in-furrow increased yields 12 bu/ac compared with APP alone (treatments 13 vs 7). A significant UAN×ATS interaction for grain yield showed a 19 bu/ac response to ATS when UAN was not applied, but no response to ATS when 8 gal/ac of UAN was applied at planting (Figure 2). Sulfur fertilization (ATS) increased stover and silage yields, when averaged across UAN and APP treatments. Stover yields were greatest with the 4 gal/ac rate of ATS, whereas silage yields were not significantly different between the 2 and 4 gal/ac rate.

Treatment effects on plant stand, final population and relative leaf chlorophyll content (RLC) are presented in Table 3. Initial plant stand was reduced slightly (500 plants/ac) with APP fertilization, when averaged across UAN and ATS treatments. Initial stand and final plant population were affected by ATS application in this study, but the differences were generally very small and would not have affected corn production. When 1 gal/ac of ATS and 4 gal/ac of APP were applied in-furrow (treatment # 13), initial plant stand and final plant population trended lower, but they were not significantly less than 4 gal/ac of APP alone (treatment # 7). Significant interactions for final plant population were found, but the differences were small about 300 plants/ac and would not have influenced corn production. Relative leaf chlorophyll content at VT-R1 increased slightly with 8 gal/ac of UAN applied at planting compared with 0 gal of UAN, when averaged across APP and ATS treatments. The 2 and 4 gal/ac rates of ATS increased RLC 5.0 and 7.7 percentage points, respectively, compared with the control (0 gal/ac), when averaged across APP and UAN treatments. One gal/ac of ATS and 4 gal/ac of APP applied in-furrow increased RLC significantly compared with 4 gal/ac of APP alone. No difference in RLC was found when the 1 gal/ac of ATS plus 4 gal/ac of APP applied in-furrow treatment (# 13) was compared to the 4 gal/ac of APP applied in-furrow plus 2 gal/ac of ATS applied as a surface dribble band treatment (# 8). The significant APP×ATS interaction for RLC showed without ATS, APP increased RLC slightly (1-2 percentage points). Whereas with ATS at 2 or 4 gal/ac, APP application had no affect on RLC (data not shown). The significant UAN×ATS interaction for RLC was similar to the APP×ATS interaction. It showed at the 0 and 2 gal/ac rates of ATS, UAN application increased RLC slightly, whereas at the 4 gal/ac rate of ATS, UAN application had no affect on RLC (data not shown). These data show a small amount of N at planting, either from APP applied in-furrow or UAN applied as a surface dribble band, increased VT-R1 RLC values slightly in the absence of ATS. However when ATS was applied, the response in RLC was significantly large and masked any effect of APP or UAN. Interestingly, the 1 and 2 gal/ac rates of ATS resulted in corn plants that were pale (significantly less RLC) when compared to the 4 gal/ac rate, but these treatments produced similar grain yields as the 4 gal/ac treatments. This suggests at this site only a small amount of S (1 gal/ac of ATS = 2.9 lb S/ac) applied in the seed furrow at planting was needed to get a yield response on this high organic matter soil.

Treatment effects on the concentration of N, P, K and S in corn stover, harvested at physiological maturity (black layer), and corn grain are presented in Table 4. Generally APP did not affect nutrient concentrations in corn stover or grain on this very high P testing site. Stover N and K concentration declined slightly when 8 gal/ac of UAN was applied at planting compared with 0 gal/ac, when averaged across APP and ATS treatments. This response could be a result of greater N loss during the wet period in June and July when 24 lb N/ac was applied at planting, which limited N supply later during grain fill, thus requiring the plant to utilize more of the N in the stalk to fill grain in August and early September. Averaged across APP and UAN treatments, 2 gal/ac of ATS increased stover N compared with the control; however, stover N concentration was not different between the 0 (control) and 4 gal/ac rate of

ATS. Stover P concentration declined slightly when 2 gal/ac or ATS was applied compared with 0 gal/ac. Sulfur concentration in corn grain increased with increasing ATS rate. No plausible explanation exists for the significant three-way interaction for stover K concentration and no other significant interactions were found. The 1 gal/ac of ATS and 4 gal/ac of APP treatment applied in-furrow increased grain S concentration compared with 4 gal/ac of APP alone.

The treatment effects on stover, grain, and total nutrient uptake are presented in Table 5. Total K uptake increased slightly with APP application, when averaged across UAN and ATS treatment main effects. However APP did not affect any other nutrient uptakes on this very high P testing site. Application of 8 gal/ac of UAN at planting decreased stover and total N and K uptake, when averaged across APP and ATS treatments. Averaged across APP and UAN treatments, stover, grain and total N uptake increased with ATS application, however no differences were found between the 2 and 4 gal/ac rates. Total N uptake was greatest (176 lb/ac) with treatments that contained very little N at planting and 2 gal/ac of ATS (treatment #'s 2 and 8). Total N uptake was 10-12 lb/ac less with treatments 11 and 12, even though they had greater early growth (V7 dry matter yield) and greater RLC. Treatments 11 and 12 contained the greatest amount of N (31 and 34 lb N/A, respectively) at planting in combination with P and S. These data show less total N was taken up by corn when more N was applied at planting and less N was applied at V2. This suggests greater N loss occurred during the wet period in June and July on treatments that received more N at planting. A reduction in N uptake probably reduced yield potential in these treatments in 2010 a high N stress growing season. Stover and total uptake of K was greatest with the 4 gal/ac rate of ATS compared with 0 or 2 gal/ac rates, when averaged across APP and UAN treatments. Generally, stover, grain, and total S uptake increased with increasing rate of ATS. Total S uptake in the corn plant increased only 2.1 lb/ac for the 4 gal/ac rate of ATS (11.5 lb S/ac) compared with the control, when averaged across APP and UAN treatments.

Several significant ($P \le 0.10$) interactions were found for stover, grain and total nutrient uptake (Table 5). An APP×UAN interaction for stover K showed K uptake was reduced about 11 lb/ac when UAN was applied without APP. while other combinations of APP and UAN (with UAN and with APP. no UAN and no APP, and no UAN with APP) had similar K uptake (data not shown). The significant UAN×ATS interactions for grain N, P and S uptake and total P uptake were similar to and a result of the same interaction for yield (Figure 2). Moreover greatest nutrient uptake values were obtained with 2 or 4 gal/ac of ATS without UAN, when UAN was applied uptake values across all rates of ATS were similar (data not shown). The APP×UAN interactions for grain P and K uptake were similar and showed P and K uptake was greatest when either APP or UAN were applied, while uptake was reduced when both were applied (data not shown). An APP×ATS interaction for total P uptake showed when APP was not applied P uptake was 37, 39. and 41 lb/ac for the 0, 2, and 4 gal/ac rates of ATS, respectively. However, when APP was applied P uptake was 40, 39, and 38 for the 0, 2, and 4 gal/ac rates, respectively (data not shown). Generally these small differences in nutrient uptake from one-site year of data would not raise much concern. However, these data suggest a potential for negative consequences when combinations of fluid fertilizers are applied at planting. Whether that potential is realized will depend on the interactions expressed in years 2 and 3 of this study. Consistent and repeated responses would lead to more definitive conclusions. The significant three-way interaction for K uptake in grain has no plausible explanation.

Rochester site

Treatment effects on early growth of small corn plants harvested on June 24 (V7-8 stage) are presented in Table 6. Plant heights and dry matter yields were increased with 4 gal/ac of APP applied in-furrow compared with 0 gal/ac, when averaged across UAN and ATS treatments. Plant heights and dry matter yields were not affected by the main effects of UAN and ATS application, and there were no significant interactions. This suggests the early growth response at this site was primarily due to P in the APP starter. Adding 1 gal/ac of ATS to 4 gal/ac of APP in-furrow had no effect on plant height and dry matter yield compared with APP alone. Nitrogen and S concentrations in V7-8 corn plants were reduced with APP application, averaged across UAN and ATS treatments. This response is likely a result of the

"dilution effect". The dilution effect occurs when early growth increases dramatically, thus causing concentrations of some nutrients to decline. The large increase in dry matter yield with APP fertilization observed in this study, resulted in increased N, P, K, and S uptake compared with plots that did not get APP. When UAN was applied at planting, P concentration in small plants decreased slightly, while S concentration and uptake increased. Four gal/ac of ATS increased N concentration in small plants compared to the 0 and 2 gal/ac treatments, when averaged across APP and UAN treatments. Sulfur concentration increased as ATS rate increased, but no differences in S uptake were found. Adding 1 gal/ac of ATS to 4 gal/ac of APP in-furrow, generally did not affect nutrient concentrations or uptakes in small corn plants compared with APP alone. The highly significant APP×ATS interactions for K concentration and uptake in V7-8 corn plants showed without APP, K concentration and uptake declined when ATS was applied. Whereas with APP, K concentration and uptake increased as the rate of ATS increased (data not shown). Lowest K concentrations and uptakes were found when APP was not applied and 4 gal/ac of ATS was applied (data not shown). These results were not found at the Sresponding Waseca site. Three other interactions had P values slightly less than alpha = 0.10 level of significance. However, the author feels they are of little consequence and do not warrant further discussion.

Treatment effects on grain moisture, grain yield, initial plant stand, final plant population, and relative leaf chlorophyll content are presented in Table 7. Grain moisture was reduced 0.9 percentage points with 4 gal/ac of APP compared with 0 gal/ac, when averaged across UAN and ATS treatments. Application of UAN reduced grain moisture slightly (0.3 percentage points), when averaged across APP and ATS treatments. Three significant interactions (APP×ATS, UAN×ATS and APP×UAN×ATS) were found for corn grain moisture. Generally these interactions showed when APP was not applied, grain moisture was reduced with ATS with or without UAN. However when APP was applied, the grain moisture response to ATS with or without UAN was erratic. Corn yields only ranged from 207 to 213 bu/ac across all 14 treatments in this study. No significant differences were found among treatment main effects. At VT-R1 RLC ranged from 94.6 to 99.1% and was not affected by the main effects of APP and UAN application. The 2 and 4 gal/ac rates of ATS increased RLC about 1 percentage point compared with the 0 gal/ac rate of ATS, when averaged across APP and UAN main effects. The author has no plausible explanation for the significant three-way interaction for RLC.

Treatment effects on corn grain nutrient concentration and uptake are presented in Table 8. Significant differences among the 14 treatment means were not found for any of the nutrient concentrations or uptakes in corn grain. The very small differences in S concentration and uptake found in main effects were insignificant.

SUMMARY

An early and warmer-than-normal spring in 2010 appeared ideal for growing corn. Extreme wet conditions in June and July at Waseca, when soil temperatures were warm, were conducive to N loss via denitrification and leaching and probably reduced yield potential. Crop response to the treatments varied markedly between locations. The Waseca site responded more to S (ATS application), whereas the Rochester site had few responses and those were usually due to P (APP application). The primary observations from the first year of this 3-year study were:

- 1) Early plant growth (plant heights and dry matter yields) were enhanced when N, P and S starter fertilizers as APP, UAN and ATS were applied at the Waseca site, but only APP application affected early plant growth at Rochester.
- 2) Grain moisture was reduced about 1.0 percentage points when APP or UAN were applied at Waseca. The grain moisture response was similar for APP, but less for UAN at Rochester. Grain moisture was reduced 1.5 and 2.5 percentage points with the 2 and 4 gal/ac rate of ATS, respectively, compared with 0 gal/ac of ATS at Waseca. Grain moisture was not affected by ATS application at Rochester.

- 3) Corn grain yields were 6 to 9 bu/A greater with ATS (sulfur fertilization) at Waseca, when averaged across APP and UAN treatments. A significant UAN×ATS interaction for grain yield showed when UAN was not applied at planting, grain yields increased about 18 bu/ac with ATS fertilization. When UAN was applied, no yield response to ATS was observed. This interaction data along with N uptake data suggest N loss was greater during the very wet June and July period and N supply was less when UAN was applied at planting, which probably reduced yields on those treatments.
- 4) At Waseca in-furrow application of 1 gal/ac of ATS and 4 gal/ac of APP increased grain yields 12 bu/ac compared with 4 gal/ac of APP alone.
- 5) No yield responses to N, P and S starter fertilizers were found at Rochester. This site has a recent (2 years ago) history of fertilization with beef manure. It's likely mineralization from past manure applications provided adequate nutrients for corn in 2010 at the Rochester location.

ACKNOWLEDGEMENT

Grateful appreciation is extended to the Minnesota Agricultural Fertilizer Research and Education Council and the Fluid Fertilizer Foundation for funding this research, and to Ward Laboratories, Inc. for conducting the plant analyses as part of in-kind support given to the Fluid Fertilizer Foundation.

REFERENCES

Randall and Vetsch. 2010. Enhancing continuous corn production under high-residue conditions with starter fluid fertilizer combinations and placements. Online:

http://sroc.cfans.umn.edu/prod/groups/cfans/@pub/@cfans/@sroc/@research/documents/asset/cfans_a sset_181506.pdf

		Precipi	itation				
	Wa	iseca	Roc	hester	Waseca GDUs		
Year	2010	Normal ″	2010	Normal	2010	Normal ^{1/}	
	ind	ches	in	ches			
2010	3.27	3.96	3.72	3.5	363	337	
2010	9.64	4.22	6.55	4.0	509	532	
2010	6.61	4.47	3.81	4.6	691	644	
2010	2.43	4.58	6.49	4.3	698	584	
2010	12.66	3.19	9.62	3.1	320	322	
Total	34.61	20.42	30.19	19.6	2581 ^{2/}	2419	
	2010 2010 2010 2010 2010 2010	Year 2010 ind ind 2010 3.27 2010 9.64 2010 6.61 2010 2.43 2010 12.66	WasecaYear2010Normalinches2010 3.27 3.96 2010 9.64 4.22 2010 6.61 4.47 2010 2.43 4.58 2010 12.66 3.19	Year 2010 Normal [™] 2010 inchesinchesinches inches inches inches 2010 3.27 3.96 3.72 2010 2010 9.64 4.22 6.55 2010 6.61 4.47 3.81 2010 2.43 4.58 6.49 2010 12.66 3.19 9.62	WasecaRochesterYear2010Normal2010Normalinchesinches20103.273.96 3.72 3.5 20109.644.22 6.55 4.0 20106.614.47 3.81 4.6 20102.43 4.58 6.49 4.3 201012.66 3.19 9.62 3.1	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

Table 1. Precipitation at Waseca and Rochester and growing degree units (GDUs) at Waseca.

¹∕ 30-Yr normal, 1971-2000.

 $\frac{2}{2}$ May – September total.

Table 2. Growth, nutrient	concentration	and uptake	of V7	corn	plants a	at Was	eca.
	17	W/holo	Dlant	Com	alaa at '	77 / 1	

Tab	le 2. (Growth	, nutrie	ent cond	centratio	on and	uptake	of V7 co	orn plant	s at Was	seca.		
				V7			Whole	Plant S	amples	at V7 (Ju	ine 21)		
	Fe	rtilizer ı	rate	Plant	-		Concer	ntration			Upt	ake	
Trt	APP	UAN	ATS	height	Yield	Ν	Р	K	S	Ν	Р	Κ	S
#		gal/ac		inch	lb/ac		%	6			lb/a	ac	
1	0	0	0	28.4	438	3.85	0.423	4.60	0.200	17.0	1.89	20.3	0.88
2	0	0	2	31.4	593	3.85	0.420	4.77	0.195	22.9	2.50	28.5	1.16
3	0	0	4	31.9	636	3.70	0.445	4.76	0.218	23.6	2.84	30.4	1.39
4	0	8	0	33.9	767	3.88	0.463	4.50	0.195	29.7	3.50	34.6	1.50
5	0	8	2	34.9	815	3.97	0.440	4.59	0.208	32.3	3.58	37.4	1.69
6	0	8	4	35.6	852		0.463	4.66	0.218	33.1	3.95	40.1	1.86
7	4	0	0	32.9	584	3.62	0.433	4.60	0.193	21.2	2.52	26.8	1.12
8	4	0	2	35.0	730	3.84	0.463	4.74	0.200	28.0	3.37	34.5	1.46
9	4	0	4	35.0	720	3.76	0.433	4.50	0.213	27.3	3.10	32.3	1.53
10	4	8	0	34.9	810	3.65	0.435	4.90	0.175	29.5	3.53	39.6	1.42
11	4	8	2	37.1	913	3.71	0.438	4.72	0.193	33.9	4.00	43.1	1.76
12	4	8	4	36.6	847	3.70	0.430	4.54	0.213	31.2	3.64	37.9	1.80
13	4	0	1*	34.7	749	3.79	0.443	4.68	0.193	28.3	3.31	35.0	1.44
14	4	8	1*	35.0	786	3.69	0.440	4.87	0.185	29.1	3.46	38.6	1.46
Stat	e for	o Eact	orial I	Design	/Trootr	nonto	1 1 2 \						
						nents	<u></u>						
No	•	34-0) a	philed	d in-fur 32.7	683	2 95	0.442	4 65	0.205	26.4	3.04	31.9	1.41
	jal/ac			35.3	767	3.71	0.442	4.65		20.4	3.36	35.7	1.51
-	ja⊮ac > F:			0.001	0.005		0.438	0.844		0.080	0.026	0.006	0.112
1 -	~1.			0.001	0.005	0.050	0.074	0.044	0.015	0.000	0.020	0.000	0.112
UAN	N (28-	0-0) ap	plied	as a sı	urface o	dribble	band						
No	•	<i>,</i> .	•	32.4	617		0.436	4.66	0.203	23.3	2.70	28.8	1.26
8 0	jal/ac			35.5	834	3.79	0.445	4.65	0.200	31.6	3.70	38.8	1.67
-	> F:			0.001	0.001	0.681	0.330	0.916	0.315	0.001	0.001	0.001	0.001
. – .													
	-	0-0-26)	appli				ble ban		0.404	04.0	0.00		4 00
No				32.5	650		0.438		0.191	24.3	2.86	30.3	1.23
-	al/ac			34.6	763		0.440	4.71	0.199	29.3	3.36	35.9	1.52
	al/ac			34.8	764		0.443			28.8	3.38		1.64
	> F:		0.40				0.921				0.005		
AV	erage	e LSD (0.10):	0.7	59	NS	NS	NS	0.006	2.41	0.28	2.7	0.13
Inte	ractio	ons (P	> F)										
	P×U	•	,	0.001	0.187	0.189	0.062	0.243	0.072	0.062	0.056	0.452	0.052
AP	P×AT	ſS					0.151			0.680	0.148	0.116	0.637
UA	N×A	ГS							0.155		0.274		
AP	P×U	AN×AT	S						0.422		0.973	0.840	0.916
•					. .								
		RCB c	lesign	<u>all 14</u>					0.00			0.00	0.001
	> F:	105/-					0.609				0.001		
				1.4	91	NS	NS		0.013	3.7	0.44	4.3	0.20
^ C	ne ga	ai/ac ra	te of A	ATS app	biled in-	rurrow v	with see	ed and 1	0-34-0.				

Table 3. Grain moisture, grain, stover and silage yield	ds, plant stand,
final plant population, and relative leaf chlorophyll at	Waseca.

	- piùn	(popul					priyn ac			
								Initial	Final	VT-R1
	Fe	rtilizer	rate	Grain	Grain	Stover	Silage	Plant	Plant	Leaf
Trt	APF	' UAN	ATS	H_2O	Yield	Yield	Yield	Stand	Pop.	Chloro
#		gal/ac		%	bu/ac	- ton d	m/ac -	plants>	(10 ³ /ac	%
1	0	0	0	20.7	202	2.90	7.69	34.6	33.7	89.7
2	0	0	2	19.0	220	3.02	8.21	35.0	33.8	94.8
3	0	0	4	17.5	220	3.23	8.42	33.7	33.2	99.2
4	0	8	0	19.5	213	2.63	7.66	34.6	33.8	90.6
5	0	8	2	18.0	220	2.91	8.11	34.7	33.8	97.1
6	0	8	4	16.9	210	3.24	8.20	34.4	33.8	99.1
7	4	0	0	19.0	207	3.06	7.95	34.4	33.7	91.8
8	4	0	2	18.2	223	3.09	8.36	34.1	33.6	94.9
9	4	0	4	17.2	222	3.19	8.45	34.2	33.6	98.8
10	4	8	0	18.8	212	3.06	8.08	33.5	33.5	92.2
11	4	8	2	16.8	210	2.95	7.92	34.6	33.8	97.5
12	4	8	4	16.5	209	3.39	8.34	33.3	33.2	98.2
13	4	0	1*	18.6	219	3.13	8.31	33.6	33.4	94.2
14	4	8	1*	17.9	209	3.01	7.95	33.4	33.2	92.7
•					(T		40)			
						nents 1	<u>-12)</u>			
	•	34-0) a	pplied	l in-fur		0.00	0.05	04 5	00 -	05.4
NC	one			18.6	214	2.99	8.05	34.5	33.7	95.1

None	18.6	214	2.99	8.05	34.5	33.7	95.1
4 gal/ac	17.7	214	3.12	8.19	34.0	33.5	95.6
P > F:	0.001	0.998	0.155	0.230	0.059	0.252	0.223

UAN (28-0-0) applied as a surface dribble band

None	18.6	216	3.08	8.18	34.3	33.6	94.9
8 gal/ac	17.7	212	3.03	8.05	34.2	33.6	95.8
P > F:	0.002	0.193	0.594	0.261	0.566	0.963	0.022

ATS (12-0-0-26) applied as a surface dribble band

None	19.5	209	2.91	7.84	34.3	33.7	91.1
2 gal/ac	18.0	218	2.99	8.15	34.6	33.7	96.1
4 gal/ac	17.0	215	3.26	8.36	33.9	33.4	98.8
P > F:	0.001	0.012	0.011	0.003	0.081	0.037	0.001
Average LSD (0.10):	0.5	5.1	0.19	0.23	0.5	0.2	0.8

Interactions (P > F)

APP×UAN	0.675	0.194	0.452	0.947	0.248	0.035	0.736
APP×ATS	0.341	0.680	0.490	0.414	0.802	0.854	0.032
UAN×ATS	0.649	0.009	0.493	0.492	0.645	0.705	0.018
APP×UAN×ATS	0.488	0.719	0.783	0.622	0.109	0.026	0.872

Stats for RCB design (all 14 treatments)

P > F:	0.001	0.021	0.195	0.063	0.057	0.022	0.001
Average LSD (0.10):	1.1	10	NS	0.45	0.9	0.4	1.6
* One gal/as rate of A	TCopp	انمط نم ف	Irroutin	lith anal	d and 1(1 24 0	

* One gal/ac rate of ATS applied in-furrow with seed and 10-34-0.

											on
Trt		UAN		Ν	Р	Κ	S	Ν	Р	Κ	S
# -		gal/ac					9	6			
		9									
1	0	0	0	0.61	0.115	1.51	0.063	1.26	0.31	0.39	0.085
2	0	0	2	0.73	0.110	1.41	0.065	1.27	0.32	0.40	0.088
3	0	0	4	0.63	0.118	1.41	0.068	1.27	0.33	0.42	0.100
4	0	8	0	0.58	0.113	1.26	0.068	1.26	0.32	0.42	0.088
5	0	8	2	0.66	0.083	1.30	0.063	1.25	0.32	0.42	0.090
6	0	8	4	0.62	0.110	1.33	0.065	1.27	0.33	0.42	0.098
7	4	0	0	0.63	0.115	1.38	0.063	1.27	0.33	0.45	0.080
8	4	0	2	0.67	0.108	1.37	0.073	1.27	0.33	0.41	0.085
9	4	0	4	0.62	0.088	1.43	0.065	1.25	0.32	0.41	0.093
10	4	8	0	0.57	0.123	1.43	0.063	1.25	0.33	0.42	0.085
11	4	8	2	0.62	0.093	1.45	0.068	1.28	0.31	0.40	0.090
12	4	8	4	0.60	0.105	1.27	0.070	1.20	0.30	0.44	0.095
13	4	0	1*	0.63		1.55	0.078	1.25	0.32	0.40	0.088
14	4	8	1*	0.61	0.103	1.43	0.050	1.23	0.32	0.38	0.083
14	-	0		0.01	0.120	1.45	0.000	1.20	0.51	0.50	0.005
Stat	s for	a Fact	orial [Desian	(Treatn	nonts 1	-12)				
				in-furi	-		12]				
No	•	54 0) u	ppnee		0.108	1.37	0.065	1.26	0.32	0.41	0.091
	al/ac				0.105	1.39	0.067	1.26	0.32	0.42	0.088
- 9 P >				0.331	0.643	0.565	0.432	0.889	0.414	0.233	0.000
	•••			0.001	0.040	0.000	0.402	0.000	0.414	0.200	0.002
	1/20	0 0) am	nlind			wibble I	hond				
	•	0-0) ap	plied		Irface d			1.00	0.22	0.44	0.000
No					0.109	1.42		1.26	0.32	0.41	0.088
	al/ac			0.61	0.104	1.34	0.066	1.26	0.32	0.42	0.091
P >	F:			0.033	0.468	0.020	1.000	0.780	0.702	0.272	0.202
ATC	(12)	0.000	onnli		ourfoo	a dribb	la hand				
	•	J-U-20)	appii		0.116		le band		0.22	0.42	0.004
No							0.064	1.26	0.32		0.084
	al/ac			0.67	0.098	1.38	0.067	1.27	0.32	0.41	0.088
	al/ac			0.61	0.105	1.36	0.067	1.26	0.32	0.42	0.096
P >			0 10).	0.007 0.04	0.071	0.720	0.383	0.825	0.988	0.376	0.001
AVE	erage	LSD (1	0.10):	0.04	0.013	NS	NS	NS	NS	112	0.004
Into	actio	ons (P	< E/								
	PxUA	•	-1)	0 872	0.214	0.040	1.000	0.676	0.303	0.199	0 301
	Px07 PxAT				0.214		0.246	0.676			0.391
	NxA1						0.246	0.880			0.721
			c								
AP	r xUP	N×AT:	5	0.763	0.072	0.073	0.445	0.750	0.988	0.114	0.904
Stat	s for	RCR	lesian	(all 14	treatm	ente)					
P >			leargh		0.270		0 4 1 2	0.993	0.891	0.100	0.004
		LSD (0 10).		NS		0.412	0.993	0.031	0.00	
								d and 10-3		0.00	0.000
0	ne ga	ar/ac ra		vi o app	mea m-r	unow w	nın seec	a and 10-3	04-0.		

Table 4. Nutrient concentrations in the corn stover and grain at Waseca.

One gal/ac rate of ATS applied in-furrow with seed and 10-34-0.

Table 5. Nutrient up	take in the corr	n stover, grain a	nd total dry ma	atter at Waseca.	

1 a.		tilizer r	<u> </u>			ake in s	-	Nutri	ient upt				al nutri	ent upt	ake
Trt	APP	UAN	ATS	Ν	P	K	S	N	Р	K	S	N	Р	K	S
#		gal/ac							lb,	/acre					-
		•													
1	0	0	0	34.8	6.66	86.7	3.60	120	29.7	36.9	8.2	155	36.4	124	11.8
2	0	0	2	44.1	6.51	84.5	3.91	132	33.3	41.1	9.1	176	39.8	126	13.0
3	0	0	4	40.5	7.68	91.4	4.40	132	34.4	43.0	10.4	172	42.1	134	14.8
4	0	8	0	30.4	5.93	66.3	3.58	126	32.5	42.3	8.8	157	38.4	109	12.4
5	0	8	2	38.0	4.87	75.0	3.65	130	33.5	43.1	9.3	168	38.3	118	13.0
6	0	8	4	40.0	7.09	85.5	4.17	125	32.8	41.8	9.6	165	39.9	127	13.8
7	4	0	0	38.8	6.93	84.4	3.81	124	31.8	43.5	7.8	163	38.7	128	11.6
8	4	0	2	41.6	6.56	84.6	4.47	134	34.2	43.2	9.0	176	40.8	128	13.4
9	4	0	4	39.2	5.50	91.0	4.14	131	33.4	42.6	9.7	170	38.9	134	13.9
10	4	8	0	35.1	7.66	86.7	3.83	126	32.6	41.7	8.5	161	40.3	128	12.4
11	4	8	2	36.4	5.46	85.4	3.99	127	30.8	40.0	9.0	164	36.3	125	12.9
12	4	8	4	40.6	7.23	86.2	4.75	125	29.7	43.1	9.4	166	36.9	129	14.1
13	4	0	1*	39.5	6.56	97.1	3.60	130	32.7	40.9	9.1	169	39.2	138	12.7
14	4	8	1*	36.9	7.67	85.6	4.06	127	30.6	37.6	8.2	164	38.3	123	12.2
					-						-	-		-	
Sta	ts for	a Fact	torial	Desiar	n (Trea	tments	s 1-12)								
		34-0) a													
	one	,.		38.0	6.46	81.6	3.89	128	32.7	41.4	9.2	166	39.1	123	13.1
	gal/ac			38.6	6.56	86.4	4.16	128	32.1	42.4	8.9	167	38.6	129	13.1
	> F:					0.104			0.402					0.046	
114	N (28.	.0_0) ai	onlied	2020	surface	dribbl	le band								
	one	0-0) aj	phieo	39.8	6.64	87.1	4.06	129	32.8	41.7	9.0	169	39.4	129	13.1
	gal/ac			36.8	6.38	80.9	3.99	123	32.0	42.0	9.1	163	38.4	123	13.1
	ya⊮ac > F:					0.037			0.250					0.041	
Г	/1.			0.040	0.547	0.037	0.721	0.224	0.230	0.710	0.005	0.052	0.252	0.041	0.950
ΔΤΟ	S (12-	0-0-26) annl	ac hai	a surf	aco dri	bble ba	nd							
	one	0-0-20	ι αρμι	34.8	6.80	81.0	3.71	124	31.7	41.1	8.3	159	38.4	122	12.0
	gal/ac			40.0	5.85	82.4	4.00	124	32.9	41.8	9.1	171	38.8	124	13.1
	gal/ac gal/ac			40.0	6.88	88.5	4.00	128	32.9	41.0	9.1	168	39.5	131	14.1
	ya#ac > F:					0.091			0.295					0.032	
		e LSD (0 10)				0.014	0.019		0.256 NS	0.001	0.003	0.040 NS	0.032	0.001
A	laye	; LSD (0.10)	3.1	113	0.0	0.30	4	113	113	0.4	0	113	0	0.5
Inte	racti	ons (P	< E/												
	PxU/	-	> ")	0 602	0 104	0.059	0.520	0.200	0 000	0 025	0.887	0 750	0 544	0.174	0 620
	P×O						0.520				0.007			0.174	
							0.777				0.938			0.260	
A	-PXU/	AN×AT	3	0.986	0.720	0.318	0.432	0.772	0.8/6	0.059	0.820	0.861	0.742	0.610	0.413
61-	10 f			o /oll 4	1 444	monte									
		KCB (uesigi			ments)		0.000	0 4 9 9	0.000	0.000	0.000	0.045	0.004	0.004
	> F:		0 10				0.194		0.133					0.021	
		e LSD (11.4		8			0.9	11	3.7	11	1.1
(ר ne g	ai/ac ra	ate of <i>i</i>	чібар	plied ir	1-TUPPOV	v with se	ed and	10-34-(J.					

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					V7			Whole	Plant S	amples a	at V7 (Ju	ine 24)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Fer	tilizer r	rate	Plant			Concer	ntration			Upt	ake	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Trt	APP	UAN	ATS	height	Yield	Ν	Р	K	S	Ν	Р	K	S
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	#		gal/ac		inch	lb/ac		%	6			lb/a	ac	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0						4.35	0.200				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0											
		0	0	4	36.1		3.58	0.415	3.16	0.218	48.8	5.66	43.1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	8	0	37.3	1629	3.48	0.403	3.89	0.205	56.8	6.55	63.1	3.34
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	8	2	37.0	1577	3.50	0.393	3.07	0.213	55.2	6.19	49.8	3.32
8 4 0 2 40.6 1949 3.28 0.418 4.31 0.198 63.8 8.12 84.8 3.83 9 4 0 4 40.6 1888 3.48 0.405 3.47 0.203 65.8 7.71 66.2 3.85 10 4 8 0 39.3 1756 3.31 0.398 3.45 0.195 58.2 6.99 61.6 3.42 11 4 8 2 3.9 1992 3.45 0.395 3.19 0.210 71.0 8.42 94.5 4.30 13 4 0 1* 40.4 1907 3.39 0.400 3.73 0.188 64.1 7.67 74.9 3.55 14 4 8 1* 40.4 1987 3.32 0.398 3.62 0.198 65.5 7.96 76.8 3.90 Stats for a Factorial Design (Treatments 1-12) APP (10-34-0) applied in-furrow None 38.2 1649 3.48 0.413 3.6	6	0	8	4	37.4	1464	3.61	0.403	3.05	0.233	52.9	5.90	44.8	3.40
9 4 0 4 40.6 1888 3.48 0.405 3.47 0.203 65.8 7.71 66.2 3.85 10 4 8 0 39.3 1756 3.31 0.398 3.45 0.195 58.2 6.99 61.6 3.42 11 4 8 2 39.9 1992 3.45 0.395 3.19 0.210 68.8 7.86 63.5 4.16 12 4 8 4 40.8 2057 3.46 0.400 3.73 0.188 64.1 7.67 74.9 3.55 14 4 8 1* 40.4 1987 3.32 0.398 3.62 0.198 65.5 7.96 76.8 3.90 Stats for a Factorial Design (Treatments 1-12) APP (10-34-0) applied in-furrow None 36.8 1472 3.55 0.410 3.45 0.212 52.3 6.02 51.0 3.12 4 gal/ac 40.0 1923 3.39 0.403 3.73 0.202 65.3 </td <td>7</td> <td>4</td> <td>0</td> <td>0</td> <td>38.9</td> <td>1897</td> <td>3.39</td> <td>0.393</td> <td>3.48</td> <td>0.195</td> <td>64.1</td> <td>7.45</td> <td>67.3</td> <td>3.69</td>	7	4	0	0	38.9	1897	3.39	0.393	3.48	0.195	64.1	7.45	67.3	3.69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	4	0	2	40.6	1949	3.28	0.418	4.31	0.198	63.8	8.12	84.8	3.83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	4	0	4	40.6	1888	3.48	0.405	3.47	0.203	65.8	7.71	66.2	3.85
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	4	8	0	39.3	1756	3.31	0.398	3.45	0.195	58.2	6.99	61.6	3.42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	4	8	2	39.9	1992	3.45	0.395	3.19	0.210	68.8	7.86	63.5	4.16
14 4 8 1* 40.4 1987 3.32 0.398 3.62 0.198 65.5 7.96 76.8 3.90 Stats for a Factorial Design (Treatments 1-12) APP (10-34-0) applied in-furrow 36.8 1472 3.55 0.410 3.45 0.212 52.3 6.02 51.0 3.12 4 gal/ac 40.0 1923 3.39 0.403 3.73 0.202 65.3 7.76 73.0 3.88 P > F: 0.001 0.001 0.001 0.165 0.151 0.002 0.001 0.00	12	4	8	4	40.8	2057	3.46	0.408	4.50	0.210	71.0	8.42	94.5	4.30
14 4 8 1* 40.4 1987 3.32 0.398 3.62 0.198 65.5 7.96 76.8 3.90 Stats for a Factorial Design (Treatments 1-12) APP (10-34-0) applied in-furrow 36.8 1472 3.55 0.410 3.45 0.212 52.3 6.02 51.0 3.12 4 gal/ac 40.0 1923 3.39 0.403 3.73 0.202 65.3 7.76 73.0 3.88 P > F: 0.001 0.001 0.001 0.165 0.151 0.002 0.001 0.0	13	4	0	1*	40.4	1907	3.39	0.400	3.73	0.188	64.1	7.67	74.9	3.55
APP (10-34-0) applied in-furrowNone 36.8 1472 3.55 0.410 3.45 0.212 52.3 6.02 51.0 3.12 4 gal/ac 40.0 1923 3.39 0.403 3.73 0.202 65.3 7.76 73.0 3.88 P > F: 0.001 0.001 0.001 0.165 0.151 0.002 0.001 0.001 0.001 0.001 UAN (28-0-0) applied as a surface dribble bandNone 38.2 1649 3.48 0.413 3.66 0.203 57.1 6.80 61.2 3.33 gal/ac 38.2 1649 3.48 0.413 3.66 0.203 57.1 6.80 61.2 3.33 As gal/ac 38.2 1649 3.44 0.400 3.53 0.211 0.572 0.750 0.035 ATS (12-0-0-26) applied as a surface dribble bandNone 38.2 1687 3.44 0.406 3.79 0.199 57.8 6.83 63.8 3.35 2 gal/ac 38.3 1714 3.45 0.444 0.206 58.9 6.92 60.1 3.51 4 gal/ac 38.7 1693 3.53 0.408 3.55 0.216 58.6 6.92 62.1 3.63 P F: 0.652 0.954 0.322 0.876 0.324 0.001 0.853 0.964 0.844 0.3	14	4	8	1*	40.4	1987							76.8	
APP (10-34-0) applied in-furrowNone 36.8 1472 3.55 0.410 3.45 0.212 52.3 6.02 51.0 3.12 4 gal/ac 40.0 1923 3.39 0.403 3.73 0.202 65.3 7.76 73.0 3.88 P > F: 0.001 0.001 0.001 0.165 0.151 0.002 0.001 0.001 0.001 0.001 UAN (28-0-0) applied as a surface dribble bandNone 38.2 1649 3.48 0.413 3.66 0.203 57.1 6.80 61.2 3.33 8 gal/ac 38.6 1746 3.47 0.400 3.53 0.211 60.5 6.98 62.8 3.66 P > F: 0.389 0.213 0.728 0.014 0.483 0.017 0.210 0.572 0.750 0.035 ATS (12-0-0-26) applied as a surface dribble bandNone 38.2 1687 3.44 0.406 3.79 0.199 57.8 6.83 63.8 3.35 2 gal/ac 38.3 1714 3.45 0.404 3.44 0.206 58.9 6.92 60.1 3.51 4 gal/ac 38.7 1693 3.53 0.408 3.55 0.216 59.6 6.92 62.1 3.63 P > F: 0.652 0.954 0.322 0.876 0.324 0.001 0.853 0.964 0.844 0.316 Average LSD (0.10)	Stat	ts for	a Fac	torial	Design	(Treat	ments	1-12)						
None36.814723.550.4103.450.21252.36.0251.03.124 gal/ac40.019233.390.4033.730.20265.37.7673.03.88P > F:0.0010.0010.0010.1650.1510.0020.0010.0010.0010.001UAN (28-0-0) applied as a surface dribble bandNone38.216493.480.4133.660.20357.16.8061.23.338 gal/ac38.617463.470.4003.530.21160.56.9862.83.66P > F:0.3890.2130.7280.0140.4830.0170.2100.5720.7500.035ATS (12-0-0-26) applied as a surface dribble bandNone38.216873.440.4063.790.19957.86.8363.83.352 gal/ac38.317143.450.4043.440.20658.96.9260.13.514 gal/ac38.716933.530.4083.550.21659.66.9262.13.63P > F:0.6520.9540.0220.8760.3240.0010.8530.9640.8440.310Average LSD (0.10)NSNS0.06NSNS0.007NSNSNSNSNSInteractions (P > F)APP×UAN0.3630.3450.2200.1220.6190.								<u> </u>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•	,				3.55	0.410	3.45	0.212	52.3	6.02	51.0	3.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
None 38.2 1649 3.48 0.413 3.66 0.203 57.1 6.80 61.2 3.33 8 gal/ac 38.6 1746 3.47 0.400 3.53 0.211 60.5 6.98 62.8 3.66 P > F: 0.389 0.213 0.728 0.014 0.483 0.017 0.210 0.572 0.750 0.035 ATS (12-0-0-26) applied as a surface dribble band None 38.2 1687 3.44 0.406 3.79 0.199 57.8 6.83 63.8 3.35 2 gal/ac 38.3 1714 3.45 0.404 3.44 0.206 58.9 6.92 60.1 3.51 4 gal/ac 38.7 1693 3.53 0.408 3.55 0.216 59.6 6.92 62.1 3.63 P > F: 0.652 0.954 0.032 0.876 0.324 0.001 0.853 0.964 0.844 0.310 Average LSD (0.10) NS NS 0.025 </td <td>-</td> <td></td>	-													
None 38.2 1649 3.48 0.413 3.66 0.203 57.1 6.80 61.2 3.33 8 gal/ac 38.6 1746 3.47 0.400 3.53 0.211 60.5 6.98 62.8 3.66 P > F: 0.389 0.213 0.728 0.014 0.483 0.017 0.210 0.572 0.750 0.035 ATS (12-0-0-26) applied as a surface dribble band None 38.2 1687 3.44 0.406 3.79 0.199 57.8 6.83 63.8 3.35 2 gal/ac 38.3 1714 3.45 0.404 3.44 0.206 58.9 6.92 60.1 3.51 4 gal/ac 38.7 1693 3.53 0.408 3.55 0.216 59.6 6.92 62.1 3.63 P > F: 0.652 0.954 0.032 0.876 0.324 0.001 0.853 0.964 0.844 0.310 Average LSD (0.10) NS NS 0.06 <td>UΔ</td> <td>N (28-</td> <td>0-0) a</td> <td>nnlied</td> <td>t as a s</td> <td>urface</td> <td>dribble</td> <td>band</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	UΔ	N (28-	0-0) a	nnlied	t as a s	urface	dribble	band						
8 gal/ac 38.6 1746 3.47 0.400 3.53 0.211 60.5 6.98 62.8 3.66 P > F: 0.389 0.213 0.728 0.014 0.483 0.017 0.210 0.572 0.750 0.035 ATS (12-0-0-26) applied as a surface dribble band None 38.2 1687 3.44 0.406 3.79 0.199 57.8 6.83 63.8 3.51 2 gal/ac 38.3 1714 3.45 0.404 3.44 0.206 58.9 6.92 60.1 3.51 4 gal/ac 38.7 1693 3.53 0.408 3.55 0.216 59.6 6.92 62.1 3.63 P > F: 0.652 0.954 0.032 0.876 0.324 0.001 0.853 0.964 0.844 0.310 Average LSD (0.10) NS NS 0.06 NS NS 0.007 NS NS NS NS JAPP×LJAN 0.363 0.345 0.220 0.122 0.619 0.693 0.462 0.561 0.804		-	c c) a	ppnot					3 66	0 203	57 1	6 80	61 2	3 33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
None38.216873.440.4063.790.19957.86.8363.83.352 gal/ac38.317143.450.4043.440.20658.96.9260.13.514 gal/ac38.716933.530.4083.550.21659.66.9262.13.63P > F:0.6520.9540.0320.8760.3240.0010.8530.9640.8440.310Average LSD (0.10)NSNS0.06NSNS0.007NSNSNSNSInteractions (P > F)APP×UAN0.3630.3450.2200.1220.6190.6930.4620.5610.8040.316APP×JAN0.3630.3450.2250.4220.0780.1790.2260.1360.0240.290UAN×ATS0.9140.7340.2250.4220.0780.4770.5460.7620.2010.489APP×UAN×ATS0.6600.5960.1020.3200.0860.6940.6520.6510.1080.637Stats for RCB design (all 14 treatments)P > F:0.0010.0160.0010.1010.0490.0000.0480.0490.0490.024Average LSD(0.10):2.03890.12NS0.830.01212.61.6726.30.73	-													
None38.216873.440.4063.790.19957.86.8363.83.352 gal/ac38.317143.450.4043.440.20658.96.9260.13.514 gal/ac38.716933.530.4083.550.21659.66.9262.13.63P > F:0.6520.9540.0320.8760.3240.0010.8530.9640.8440.310Average LSD (0.10)NSNS0.06NSNS0.007NSNSNSNSInteractions (P > F)APP×UAN0.3630.3450.2200.1220.6190.6930.4620.5610.8040.316APP×JAN0.3630.3450.2250.4220.0780.1790.2260.1360.0240.290UAN×ATS0.9140.7340.2250.4220.0780.4770.5460.7620.2010.489APP×UAN×ATS0.6600.5960.1020.3200.0860.6940.6520.6510.1080.637Stats for RCB design (all 14 treatments)P > F:0.0010.0160.0010.1010.0490.0000.0480.0490.0490.024Average LSD(0.10):2.03890.12NS0.830.01212.61.6726.30.73	л тс	2 (12)	0 0 26	\	lied as i		oo drib	hla har	. d					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	0-0-20) app						0 100	57.8	6 83	63.8	3 35
4 gal/ac 38.7 1693 3.53 0.408 3.55 0.216 59.6 6.92 62.1 3.63 P > F: 0.652 0.954 0.032 0.876 0.324 0.001 0.853 0.964 0.844 0.310 Average LSD (0.10) NS NS 0.06 NS NS 0.007 NS NS 0.964 0.844 0.310 Interactions (P > F) APP×UAN 0.363 0.345 0.220 0.122 0.619 0.693 0.462 0.561 0.804 0.316 APP×ATS 0.174 0.287 0.752 0.096 0.005 0.179 0.226 0.136 0.024 0.290 UAN×ATS 0.914 0.734 0.225 0.422 0.078 0.477 0.546 0.762 0.201 0.489 APP×UAN×ATS 0.660 0.596 0.102 0.320 0.086 0.694 0.652 0.651 0.108 0.637 Stats for RCB design (all 14 treatments) P > F: 0.001 0.016 0.001 0.101 0.049														
P > F: 0.652 0.954 0.032 0.876 0.324 0.001 0.853 0.964 0.844 0.310 Average LSD (0.10) NS NS 0.06 NS NS 0.007 NS <	-	-												
Average LSD (0.10)NSNS0.06NSNS0.007NSNSNSNSNSInteractions (P > F)APP×UAN0.3630.3450.2200.1220.6190.6930.4620.5610.8040.316APP×ATS0.1740.2870.7520.0960.0050.1790.2260.1360.0240.290UAN×ATS0.9140.7340.2250.4220.0780.4770.5460.7620.2010.489APP×UAN×ATS0.6600.5960.1020.3200.0860.6940.6520.6510.1080.637Stats for RCB design (all 14 treatments)P > F:0.0010.0160.0010.1010.0490.0000.0480.0490.0490.024Average LSD(0.10):2.03890.12NS0.830.01212.61.6726.30.73		-												
APP×UAN 0.363 0.345 0.220 0.122 0.619 0.693 0.462 0.561 0.804 0.316 APP×ATS 0.174 0.287 0.752 0.096 0.005 0.179 0.226 0.136 0.024 0.290 UAN×ATS 0.914 0.734 0.225 0.422 0.078 0.477 0.546 0.762 0.201 0.489 APP×UAN×ATS 0.660 0.596 0.102 0.320 0.086 0.694 0.652 0.651 0.108 0.637 Stats for RCB design (all 14 treatments) P > F: 0.001 0.016 0.001 0.101 0.049 0.048 0.049 0.049 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73			LSD ((0.10)										
APP×UAN 0.363 0.345 0.220 0.122 0.619 0.693 0.462 0.561 0.804 0.316 APP×ATS 0.174 0.287 0.752 0.096 0.005 0.179 0.226 0.136 0.024 0.290 UAN×ATS 0.914 0.734 0.225 0.422 0.078 0.477 0.546 0.762 0.201 0.489 APP×UAN×ATS 0.660 0.596 0.102 0.320 0.086 0.694 0.652 0.651 0.108 0.637 Stats for RCB design (all 14 treatments) P > F: 0.001 0.016 0.001 0.101 0.049 0.048 0.049 0.049 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73		•		. ,										
APP×ATS 0.174 0.287 0.752 0.096 0.005 0.179 0.226 0.136 0.024 0.290 UAN×ATS 0.914 0.734 0.225 0.422 0.078 0.477 0.546 0.762 0.201 0.489 APP×UAN×ATS 0.660 0.596 0.102 0.320 0.086 0.694 0.652 0.651 0.108 0.637 Stats for RCB design (all 14 treatments) P > F: 0.001 0.016 0.001 0.101 0.049 0.000 0.048 0.049 0.024 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73			•	> F)										
UAN×ATS 0.914 0.734 0.225 0.422 0.078 0.477 0.546 0.762 0.201 0.489 APP×UAN×ATS 0.660 0.596 0.102 0.320 0.086 0.694 0.652 0.651 0.108 0.637 Stats for RCB design (all 14 treatments) P > F: 0.001 0.016 0.001 0.101 0.049 0.000 0.048 0.049 0.049 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73														
APP×UAN×ATS 0.660 0.596 0.102 0.320 0.086 0.694 0.652 0.651 0.108 0.637 Stats for RCB design (all 14 treatments) P > F: 0.001 0.016 0.001 0.101 0.049 0.000 0.048 0.049 0.049 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73														
Stats for RCB design (all 14 treatments) P > F: 0.001 0.016 0.001 0.101 0.049 0.000 0.048 0.049 0.049 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73														
P > F: 0.001 0.016 0.001 0.101 0.049 0.000 0.048 0.049 0.049 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73	AF	P×U/	AN×AT	S	0.660	0.596	0.102	0.320	0.086	0.694	0.652	0.651	0.108	0.637
P > F: 0.001 0.016 0.001 0.101 0.049 0.000 0.048 0.049 0.049 0.024 Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73	Stat	ts for	RCB	desig	n (all 14	treatn	nents)							
Average LSD(0.10): 2.0 389 0.12 NS 0.83 0.012 12.6 1.67 26.3 0.73								0.101	0.049	0.000	0.048	0.049	0.049	0.024
0 ()	Av	erage	LSD(0.10):										

Table 6. Early growth, yield, nutrient concentration and uptake of V7 corn plants at Rochester.V7Whole Plant Samples at V7 (June 24)

Table 7. Grain moisture and yield, plant stand, final plant population, and relative leaf chlorophyll at Rochester.

pol	Julatic	л, anu	relativ		поторг		JULIESIE	. <u> </u>
						Initial	Final	VT-R1
	Fe	rtilizer i	rate	Grain	Grain	Plant	Plant	Leaf
Trt	APF	' UAN	ATS	H_2O	Yield	Stand	Pop.	Chloro
#		gal/ac		%	bu/ac	plants	×10 ³ /A	%
1	0	0	0	17.9	207	34.4	34.2	96.9
2	0	0	2	17.6	207	35.2	34.4	98.4
3	0	0	4	17.3	211	35.0	34.4	96.8
4	0	8	0	17.6	208	34.4	33.9	94.6
5	0	8	2	17.0	209	34.7	34.3	97.8
6	0	8	4	16.7	207	34.3	33.9	99.1
7	4	0	0	16.3	209	33.9	33.7	97.1
8	4	0	2	17.3	210	34.2	33.9	96.8
9	4	0	4	16.1	210	35.1	34.5	97.9
10	4	8	0	16.5	210	34.2	34.1	98.1
11	4	8	2	16.0	211	35.2	34.5	98.3
12	4	8	4	17.0	211	34.3	34.0	96.9
13	4	0	1*	16.8	209	34.3	34.0	97.7
14	4	8	1*	16.4	213	33.4	33.4	96.2

Stats for a Factorial Design (Treatments 1-12)

APP (10-34-0) applied in-furrow

None	17.4	208	34.7	34.2	97.3
4 gal/ac	16.5	210	34.5	34.1	97.5
P > F:	0.001	0.211	0.431	0.550	0.581

UAN (28-0-0) applied as a surface dribble band

None	17.1	209	34.6	34.2	97.3
8 gal/ac	16.8	209	34.5	34.1	97.5
P > F:	0.081	0.952	0.531	0.595	0.735

ATS (12-0-0-26) applied as a surface dribble band

None	17.1	209	34.2	34.0	96.7
2 gal/ac	17.0	209	34.8	34.3	97.8
4 gal/ac	16.8	210	34.7	34.2	97.7
P > F:	0.332	0.881	0.058	0.147	0.067
Average LSD (0.10)	NS	NS	0.4	NS	0.9

Interactions (P > F)

APP×UAN	0.191	0.625	0.134	0.103	0.401
APP×ATS	0.071	0.953	0.824	0.596	0.041
UAN×ATS	0.015	0.767	0.100	0.098	0.414
APP×UAN×ATS	0.031	0.699	0.286	0.419	0.008

Stats for RCB design (all 14 treatments)

P > F:	0.001	0.938	0.020	0.038	0.031
Average LSD (0.10)	0.7	NS	0.8	0.5	1.8

* One gal/ac rate of ATS applied in-furrow with seed.

Table 8. Nutrie	nt concentratior	n and uptak	e in the cor	n arain at	Rochester.

T 4		rtilizer ı			ain con				ient upta		
l rt	APF	' UAN	ATS	Ν	Р	K	S	N	Р	K	S
# -		gal/ac			· %	⁄o			lb/a	ac	
1	0	0	0	1.26	0.28	0.36	0.090	123	27.7	34.9	8
2	0	0	2	1.23	0.28		0.090	120	27.5	33.4	8
3	0	0	4	1.25	0.28		0.090	124	27.7	33.1	9
4	0	8	0	1.24	0.30	0.37		122	29.5	35.9	9
5	0	8	2	1.25	0.27	0.34		124	26.4	33.3	9
6	0	8	4	1.22	0.28	0.34	0.095	119	27.6	33.5	9
7	4	0	0	1.21	0.28	0.36	0.095	119	27.9	35.4	9
8	4	0	2	1.25	0.28	0.35	0.090	124	28.2	34.4	9
9	4	0	4	1.24	0.28	0.35	0.095	123	28.0	34.7	9
10	4	8	0	1.21	0.30	0.37	0.093	120	29.9	36.9	9
11	4	8	2	1.23	0.29	0.36	0.095	123	28.9	35.7	9
12	4	8	4	1.24	0.28	0.34	0.095	124	27.4	33.9	9
13	4	0	1*	1.23	0.31	0.37	0.090	122	30.4	36.9	8
14	4	8	1*	1.22	0.31	0.37	0.093	123	31.2	37.5	9
Stat	s fo	r a Fac	torial	Design	(Treatr	nents 1	-12)				
		-34-0) a	applie	d in-fur							
No				1.24	0.28	0.35	0.092	122	27.7	34.0	9
-	al/ad			1.23	0.29		0.094	122	28.4	35.1	9
P >	• F:			0.222	0.647	0.343	0.205	0.992	0.438	0.195	0.06
	-	-0-0) a	pplied	l as a s							
No	ne			1.24	0.28	0.35	0.092	122	27.8	34.3	9
8 g	al/ad)		1.23	0.29	0.35		122	28.3	34.9	9
8 g		;		1.23 0.616	0.29 0.576	0.35	0.094 0.061				9
8 g P > ATS	al/ad • F: • (12 •) appl	0.616 ied as a	0.576 a surfa c	0.35 0.515 ce drib t	0.061 ble band	122 0.738	0.573	34.9 0.536	9 0.0
8 g P > ATS No	al/ad F: (12 - ne	-0-0-26) appl	0.616 ied as a 1.23	0.576 a surfac 0.29	0.35 0.515 ce dribk 0.36	0.061 ble band 0.093	122 0.738 121	0.573 28.8	34.9 0.536 35.8	9 0.0
8 g P > ATS Not 2 g	al/ad F: (12 : ne al/ad	-0-0-26) appl	0.616 ied as a 1.23 1.24	0.576 a surfac 0.29 0.28	0.35 0.515 ce dribk 0.36 0.35	0.061 ble band 0.093 0.092	122 0.738 121 123	0.573 28.8 27.8	34.9 0.536 35.8 34.2	9 0.07 9 9
8 g P > ATS Noi 2 g 4 g	al/ad F: (12 ne al/ad	-0-0-26) appl	0.616 ied as a 1.23 1.24 1.24	0.576 a surfac 0.29 0.28 0.28	0.35 0.515 ce dribk 0.36 0.35 0.34	0.061 ble band 0.093 0.092 0.094	122 0.738 121 123 123	0.573 28.8 27.8 27.7	34.9 0.536 35.8 34.2 33.8	9 0.07 9 9 9
8 g P > ATS Noi 2 g 4 g P >	al/ad F: (12 ne al/ad al/ad	-0-0-26		0.616 ied as a 1.23 1.24 1.24 0.559	0.576 a surfac 0.29 0.28 0.28 0.414	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109	0.061 ble band 0.093 0.092 0.094 0.489	122 0.738 121 123 123 0.506	0.573 28.8 27.8 27.7 0.479	34.9 0.536 35.8 34.2 33.8 0.163	9 0.0 9 9 9 0.5
8 g P > ATS Noi 2 g 4 g P >	al/ad F: (12 ne al/ad al/ad	-0-0-26		0.616 ied as a 1.23 1.24 1.24 0.559	0.576 a surfac 0.29 0.28 0.28 0.414	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109	0.061 ble band 0.093 0.092 0.094	122 0.738 121 123 123 0.506	0.573 28.8 27.8 27.7 0.479	34.9 0.536 35.8 34.2 33.8	9 0.0 9 9 9 0.5
8 g P > ATS Noi 2 g 4 g P > Ave	al/ad F: (12 ne al/ad al/ad F: erag	-0-0-26	(0.10)	0.616 ied as a 1.23 1.24 1.24 0.559 NS	0.576 a surfac 0.29 0.28 0.28 0.414 NS	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109 NS	0.061 0.093 0.092 0.094 0.489 NS	122 0.738 121 123 123 0.506 NS	0.573 28.8 27.8 27.7 0.479 NS	34.9 0.536 35.8 34.2 33.8 0.163 NS	9 0.0 9 9 9 0.5 0.5
8 g P > ATS Noi 2 g 4 g P > Ave Inter	al/ad F: (12 ne al/ad F: erag racti P×U	-0-0-26 c e LSD (ions (P AN	(0.10)	0.616 ied as a 1.23 1.24 1.24 0.559 NS 0.819	0.576 a surfac 0.29 0.28 0.28 0.414 NS 0.878	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109 NS 0.960	0.061 ble band 0.093 0.092 0.094 0.489 NS 0.205	122 0.738 121 123 123 0.506 NS 0.586	0.573 28.8 27.8 27.7 0.479 NS 0.764	34.9 0.536 35.8 34.2 33.8 0.163 NS 0.904	9 0.0 9 9 9 0.5 0.5 0.3
8 g P > ATS 2 g 4 g P > Ave Ave	al/ad F: (12 ne al/ad al/ad F: erag racti P×U P×A	-0-0-26 c c e LSD (ions (P AN TS	(0.10)	0.616 ied as a 1.23 1.24 1.24 0.559 NS 0.819 0.091	0.576 a surfac 0.29 0.28 0.28 0.414 NS 0.878 0.748	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109 NS 0.960 0.910	0.061 ble band 0.093 0.092 0.094 0.489 NS 0.205 0.901	122 0.738 121 123 123 0.506 NS 0.586 0.257	0.573 28.8 27.8 27.7 0.479 NS 0.764 0.727	34.9 0.536 35.8 34.2 33.8 0.163 NS 0.904 0.908	9 0.07 9 9 0.53 N 0.36 0.94
8 g P > ATS Noi 2 g 4 g P > Ave AP AP UA	al/ac F: (12) ne al/ac F: erag racti PxU PxA NxA	-0-0-26 e LSD (ions (P AN TS TS	(0.10) • > F)	0.616 ied as a 1.23 1.24 1.24 0.559 NS 0.819 0.091 0.825	0.576 a surfac 0.29 0.28 0.28 0.414 NS 0.878 0.748 0.535	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109 NS 0.960 0.910 0.856	0.061 ble band 0.093 0.092 0.094 0.489 NS 0.205 0.901 0.733	122 0.738 121 123 123 0.506 NS 0.586 0.257 0.635	0.573 28.8 27.8 27.7 0.479 NS 0.764 0.727 0.476	34.9 0.536 35.8 34.2 33.8 0.163 NS 0.904 0.908 0.767	9 0.0 9 9 9 9 9 9 0.5 0 0.5 0 9 0.3 0 0.9 0.0
8 g P > ATS Noi 2 g 4 g P > Ave AP AP UA	al/ac F: (12) ne al/ac F: erag racti PxU PxA NxA	-0-0-26 c c e LSD (ions (P AN TS	(0.10) • > F)	0.616 ied as a 1.23 1.24 1.24 0.559 NS 0.819 0.091 0.825	0.576 a surfac 0.29 0.28 0.28 0.414 NS 0.878 0.748 0.535	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109 NS 0.960 0.910 0.856	0.061 ble band 0.093 0.092 0.094 0.489 NS 0.205 0.901	122 0.738 121 123 123 0.506 NS 0.586 0.257 0.635	0.573 28.8 27.8 27.7 0.479 NS 0.764 0.727 0.476	34.9 0.536 35.8 34.2 33.8 0.163 NS 0.904 0.908	9 0.0 9 9 9 9 9 9 9 9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
8 g P > ATS No 2 g 4 g P > Ave AP UA AP	al/ac F: (12: ne al/ac al/ac F: erag racti P×U P×A N×A P×U	-0-0-26 e LSD (ions (P AN TS TS AN×AT	(0.10) > F)	0.616 ied as a 1.23 1.24 1.24 0.559 NS 0.819 0.091 0.825 0.231 n (all 14	0.576 a surfac 0.29 0.28 0.28 0.414 NS 0.878 0.748 0.535 0.714 treatm	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109 NS 0.960 0.910 0.856 0.682	0.061 ble band 0.093 0.092 0.094 0.489 NS 0.205 0.901 0.733 0.271	122 0.738 121 123 123 0.506 NS 0.586 0.257 0.635 0.182	0.573 28.8 27.8 27.7 0.479 NS 0.764 0.727 0.476 0.825	34.9 0.536 35.8 34.2 33.8 0.163 NS 0.904 0.904 0.908 0.767 0.832	9 0.0 9 9 9 0.5 0.5 0.3 0.3 0.3 0.4 0.4
8 g P > ATS No 2 g 4 g P > Ave AP UA AP	al/ac F: (12: ne al/ac al/ac F: erag racti P×U P×A N×A P×U s fo	-0-0-26 e LSD (ions (P AN TS TS AN×AT	(0.10) > F)	0.616 ied as a 1.23 1.24 1.24 0.559 NS 0.819 0.091 0.825 0.231 n (all 14	0.576 a surfac 0.29 0.28 0.414 NS 0.878 0.748 0.535 0.714 treatm	0.35 0.515 ce dribk 0.36 0.35 0.34 0.109 NS 0.960 0.910 0.856 0.682	0.061 ble band 0.093 0.092 0.094 0.489 NS 0.205 0.901 0.733 0.271	122 0.738 121 123 123 0.506 NS 0.586 0.257 0.635 0.182	0.573 28.8 27.8 27.7 0.479 NS 0.764 0.727 0.476 0.825	34.9 0.536 35.8 34.2 33.8 0.163 NS 0.904 0.908 0.767	9 0.07 9 9 9 0.53 N 0.36 0.94 0.68 0.40

Figure 1. The beneficial effects (greater early growth and vigor and a darker green color) of fluid starter fertilizers at Waseca. On the left no starter on the right 4 gal/ac of APP applied in-furrow plus 8 gal/ac of UAN and 4 gal/ac of ATS applied as a surface dribble band 2" to the side of the row (picture taken on June 21, 2010).

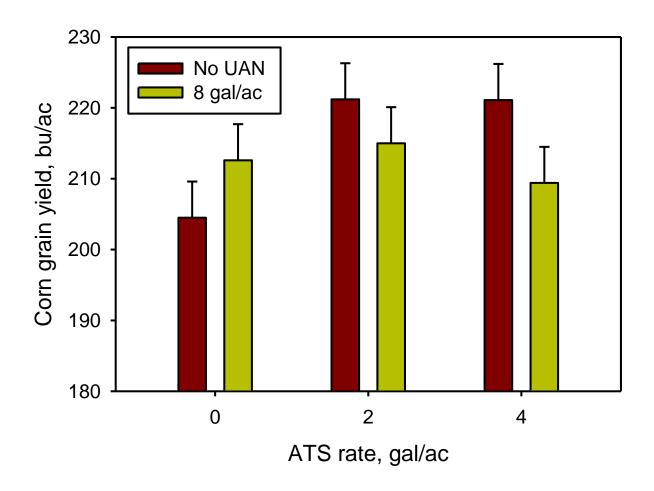


Figure 2. Corn yield as affected by ATS rate with or without 8 gal/ac of UAN applied at planting at Waseca.